user-helmet-safetyPromptDAG Builder

πŸ•ΈοΈ Visual Suggestion: Consider adding a flowchart showing how a multi-node prompt graph connects nodes like summarizer β†’ classifier β†’ action decision prompt.

The PromptDAG Builder is a visual and programmatic interface for designing and executing multi-prompt workflows using a directed acyclic graph (DAG) abstraction. It enables developers and non-technical users to construct complex semantic flows by chaining prompts into structured logic graphs.

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                          PROMPTDAG EXAMPLE WORKFLOW                            β”‚
β”‚                                                                                β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”‚
β”‚   β”‚               β”‚     β”‚                 β”‚     β”‚                   β”‚          β”‚
β”‚   β”‚  Document     │────▢│  Summarizer     │────▢│  Sentiment        β”‚          β”‚
β”‚   β”‚  Extractor    β”‚     β”‚                 β”‚     β”‚  Analyzer         β”‚          β”‚
β”‚   β”‚               β”‚     β”‚                 β”‚     β”‚                   β”‚          β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜          β”‚
β”‚                                                         β”‚                      β”‚
β”‚                                                         β–Ό                      β”‚
β”‚                                           β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”          β”‚
β”‚                                           β”‚                         β”‚          β”‚
β”‚                                           β”‚  Conditional Branch     β”‚          β”‚
β”‚                                           β”‚                         β”‚          β”‚
β”‚                                           β”‚                         β”‚          β”‚
β”‚                                           β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜          β”‚
β”‚                                                    β”‚                           β”‚
β”‚                          β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚                          β”‚                      β”‚  β”‚  β”‚                    β”‚   β”‚
β”‚                          β”‚  Negative Feedback   │◀─┴─▢│  Recommendation    β”‚   β”‚
β”‚                          β”‚  Handler            β”‚     β”‚  Generator         β”‚   β”‚
β”‚                          β”‚                      β”‚     β”‚                    β”‚   β”‚
β”‚                          β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                                                                                β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

1. Conceptual Model

Each prompt within PromptHub can act as a node within a DAG. These nodes can:

  • Accept input from previous nodes

  • Transform or reformat data

  • Invoke LLMs or agent modules

  • Produce intermediate outputs for downstream tasks

DAG edges define data flow, execution order, and conditional branching.

2. Features

  • Visual Editor: Web-based composer to drag-and-drop prompt modules, connect them, and assign parameters

  • Parameter Propagation: Output of one node can be passed as dynamic input to the next

  • Conditional Execution: Nodes can execute only if certain outputs match predicates

  • Parallel Execution: Independent branches can be executed in parallel and merged downstream

  • Reusable Subgraphs: DAG fragments can be saved, versioned, reused, and shared

3. On-Chain Representation

Each PromptDAG is hashed and stored on-chain as a unique flow asset. This allows:

  • Transparent and reproducible agent behavior

  • Version tracking and flow auditing

  • DAG-specific licensing and monetization

4. Integration with Agents

PromptDAGs can be directly consumed by:

  • Autonomous agents (e.g. AutoGPT) to replace custom toolchains

  • Smart contracts that call semantic AI modules

  • DAO workflows for dynamic governance proposals

The DAG builder transforms PromptHub from a prompt registry into a full-fledged semantic orchestration layer for AI-native computation.

Last updated